Novel Nano material Research group

Publication

Journals

  • Single-crystal growth
  • Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation
  • Joo Song Lee, Soo Ho Choi, Seok Joon Yun, Yong In Kim, Stephen Boandoh, Ji-Hoon Park, Bong Gyu Shin, Hayoung Ko, Seung Hee Lee, Young-Min Kim, Young Hee Lee, Ki Kang Kim, and Soo Min Kim. Science 362, 817-821 2018
  • We discover a method of synthesizing wafer-scale single-crystal (SC) hexagonal boron nitride (hBN) monolayer film. In contrary to traditional epitaxial growth, liquid gold substrate allows the self-collimation of circular hBN grains, eventually forming an SC hBN film on a wafer scale. SC hBN serves the growth template for SC-Graphene/hBN heterostructure and SC tungsten disulfide. This is the first…
  • 2D alloy
  • Tailoring Domain Morphology in Monolayer NbSe2 and WxNb1-xSe2 Heterostructure
  • ACS Nano 14, 8784-8792 2020
  • 2D material properties, including electronic and optical properties, can be adjusted through alloying. In this work, we dope NbSe2 with W to make a lateral heterostructure with semiconducting WSe2 on the inside and metallic NbSe2 on the outside. The each point of doping level is characterized by STEM (Scanning Transmission Electron Microscopy) and well correlated with optical (Raman, Photoluminesc…
  • Catalyst
  • Substitutional VSn Nanodispersed in MoS2 Film for Pt-scalable Catalyst
  • Frederick Osei-Tutu Agyapong-Fordjour, Seok Joon Yun, Hyung-Jin Kim, Wooseon Choi, Soo Ho Choi, Laud Anim Adofo, Stephen Boandoh, Yong In Kim, Soo Min Kim, Young-Min Kim, Young Hee Lee, Young-Kyu Han, and Ki Kang Kim. arXiv:2010.10908 2020
  • This work demonstrate the basal plane activation of 2D MoS2 via substituted V atoms as VSn unit in 2H-MoS2 lattice. The VSn units acts as acive sites and also charge transfer pathways for efficient hydrogen evolution.
  • Device application
  • Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics
  • Ki Kang Kim, Hyun Seok Lee, and Young Hee Lee. Chem. Soc. Rev. 47, 6342-6369 2018
  • This work reviews the recent progress of the large-area synthesis of hBN and other related vdW heterostructures via CVD, and artificial construction of vdW heterostructures and 2D vdW electronics based on hBN, in terms of charge fluctuations, passivation, gate dielectrics, tunneling, Coulombic interactions, and contact resistantces. The challenges and future perspectives for practical applications…
145. A robust and highly active bimetallic phosphide/oxide heterostructure electrocatalyst for efficient industrial-scale hydrogen production
Author
Balakrishnan Kirubasankar, Jisu Kwon, Sohyeon Hong, Yo Seob Won, Soo Ho Choi, Jeeho Lee, Jae Woo Kim, Ki Kang Kim*, Soo Min Kim*
Journal
Nano Energy
Volume(Issue)
128
Page
109805
Publication Date
2024.05.27
Project Number
2022R1A2C2091475, 2022M3F3A2A01072215, IBS-R011-D1
Efficient and durable high-current-density bifunctional electrocatalysts are vital for cost-effective production of alkaline water electrolyzers (AWEs) on an industrial scale. However, existing commercial catalysts, such as Raney Ni which requires over 2.5 V for just 500 mA cm− 2, fail to achieve high current densities with low cell voltages. In this study, we introduce a bifunctional RuP2/Ni5P4/NiMoO4 heterostructure electrocatalyst, synthesized via a facile hydrothermal method, followed by the controlled addition of ruthenium (Ru) and subsequent phosphorization. This process yielded (Ru, Ni) phosphides and NiMoO4 with a moderate weight percentage and mass loading of Ru content, approximately 1.02 wt% and 61 μg cm− 2, respectively. The synergistic effect of these phosphides and bimetallic oxides significantly improves water dissociation, as well as the hydrogen and oxygen evolution reaction (HER and OER) performances. Under industrial conditions (80 ◦C and 6 M KOH), our catalyst achieves low overpotentials of 273 mV for HER and 390 mV for OER at 2000 mA cm− 2, outperforming commercial Pt/C and RuO2 catalysts. Additionally, in an AWE, our catalyst maintains a low operating voltage of 1.76 V for 1 A cm− 2, with consistent performance over 100 h at 500 mA cm− 2. It records an electricity consumption of 3.97 kW h Nm− 3 and an electrolyzer efficiency of 89.1%, underscoring its potential for cost-effective industrial applications. Furthermore, accelerated degradation tests under variable current loads show no significant change in cell voltage and high-frequency resistance (HFR), demonstrating robustness for intermittent energy sources. This work proposes a novel design principle for high-performance electrocatalysts, significantly reducing reliance on noble metals and offering a robust, efficient solution for industrial-scale hydrogen production.