Novel Nano material Research group

Publication

Journals

  • Single-crystal growth
  • Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation
  • Joo Song Lee, Soo Ho Choi, Seok Joon Yun, Yong In Kim, Stephen Boandoh, Ji-Hoon Park, Bong Gyu Shin, Hayoung Ko, Seung Hee Lee, Young-Min Kim, Young Hee Lee, Ki Kang Kim, and Soo Min Kim. Science 362, 817-821 2018
  • We discover a method of synthesizing wafer-scale single-crystal (SC) hexagonal boron nitride (hBN) monolayer film. In contrary to traditional epitaxial growth, liquid gold substrate allows the self-collimation of circular hBN grains, eventually forming an SC hBN film on a wafer scale. SC hBN serves the growth template for SC-Graphene/hBN heterostructure and SC tungsten disulfide. This is the first…
  • 2D alloy
  • Tailoring Domain Morphology in Monolayer NbSe2 and WxNb1-xSe2 Heterostructure
  • ACS Nano 14, 8784-8792 2020
  • 2D material properties, including electronic and optical properties, can be adjusted through alloying. In this work, we dope NbSe2 with W to make a lateral heterostructure with semiconducting WSe2 on the inside and metallic NbSe2 on the outside. The each point of doping level is characterized by STEM (Scanning Transmission Electron Microscopy) and well correlated with optical (Raman, Photoluminesc…
  • Catalyst
  • Substitutional VSn Nanodispersed in MoS2 Film for Pt-scalable Catalyst
  • Frederick Osei-Tutu Agyapong-Fordjour, Seok Joon Yun, Hyung-Jin Kim, Wooseon Choi, Soo Ho Choi, Laud Anim Adofo, Stephen Boandoh, Yong In Kim, Soo Min Kim, Young-Min Kim, Young Hee Lee, Young-Kyu Han, and Ki Kang Kim. arXiv:2010.10908 2020
  • This work demonstrate the basal plane activation of 2D MoS2 via substituted V atoms as VSn unit in 2H-MoS2 lattice. The VSn units acts as acive sites and also charge transfer pathways for efficient hydrogen evolution.
  • Device application
  • Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics
  • Ki Kang Kim, Hyun Seok Lee, and Young Hee Lee. Chem. Soc. Rev. 47, 6342-6369 2018
  • This work reviews the recent progress of the large-area synthesis of hBN and other related vdW heterostructures via CVD, and artificial construction of vdW heterostructures and 2D vdW electronics based on hBN, in terms of charge fluctuations, passivation, gate dielectrics, tunneling, Coulombic interactions, and contact resistantces. The challenges and future perspectives for practical applications…
148. Continuous Template Growth of Large-Scale Tellurene Films on 1T′-MoTe2
Author
Jin Young Park, Min Soo Moon, Heewoo Lee, Dongil Kim, Hajung Park, Jae Woo Kim, Hayoung Ko, Taewoo Ha, Jeongwoo Kim, Young-Mi Bahk, Byoung Hee Moon, Ki Kang Kim, Seung Ryong Park, Soobong Choi, Riya Sebait, Jung Ho Kim, Young Hee Lee*, Gang Hee Han*
Journal
ACS nano
Volume(Issue)
18
Page
18992-19002
Publication Date
2024.07.11
Project Number
IBS-R011-D1
Use of a template triggers an epitaxial interaction with the depositing material during synthesis. Recent studies have demonstrated that two-dimensional tellurium (tellurene) can be directionally oriented when grown on transition metal dichalcogenide (TMD) templates. Specifically, employing a T-phase TMD, such as WTe2, restricts the growth direction even further due to its anisotropic nature, which allows for the synthesis of well-oriented tellurene films. Despite this, producing large-area epitaxial films still remains a significant challenge. Here, we report the continuous synthesis of a 1T′-MoTe2 template via chemical vapor deposition and tellurene via vapor transport. The interaction between helical Te and the 1T′-MoTe2 template facilitates the Te chains to collapse into ribbon shapes, enhancing lateral growth at a rate approximately 6 times higher than in the vertical direction, as confirmed by scanning electron microscopy and atomic force microscopy. Interestingly, despite the predominance of the lateral growth, cross-sectional transmission electron microscopy analysis of the tellurene ribbons revealed a consistent 60-degree incline at the edges. This suggests that the edges of the tellurene ribbons, where they contact the template surface, are favorable sites for additional Te absorption, which then stacks along the incline angle to expand. Furthermore, controlling the synthesis temperature, duration, and preheating time has facilitated the successful synthesis of tellurene films. The resultant tellurene exhibited hole mobility as high as ∼400 cm2/V s. After removing the underlying metallic template with plasma treatment, the film showed a current on/off ratio of ∼103. This ratio was confirmed by two-terminal field-effect transistor measurements and supported by near-field terahertz (THz) spectroscopy mapping.