Novel Nano material Research group

Publication

Journals

  • Single-crystal growth
  • Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation
  • Joo Song Lee, Soo Ho Choi, Seok Joon Yun, Yong In Kim, Stephen Boandoh, Ji-Hoon Park, Bong Gyu Shin, Hayoung Ko, Seung Hee Lee, Young-Min Kim, Young Hee Lee, Ki Kang Kim, and Soo Min Kim. Science 362, 817-821 2018
  • We discover a method of synthesizing wafer-scale single-crystal (SC) hexagonal boron nitride (hBN) monolayer film. In contrary to traditional epitaxial growth, liquid gold substrate allows the self-collimation of circular hBN grains, eventually forming an SC hBN film on a wafer scale. SC hBN serves the growth template for SC-Graphene/hBN heterostructure and SC tungsten disulfide. This is the first…
  • 2D alloy
  • Tailoring Domain Morphology in Monolayer NbSe2 and WxNb1-xSe2 Heterostructure
  • ACS Nano 14, 8784-8792 2020
  • 2D material properties, including electronic and optical properties, can be adjusted through alloying. In this work, we dope NbSe2 with W to make a lateral heterostructure with semiconducting WSe2 on the inside and metallic NbSe2 on the outside. The each point of doping level is characterized by STEM (Scanning Transmission Electron Microscopy) and well correlated with optical (Raman, Photoluminesc…
  • Catalyst
  • Substitutional VSn Nanodispersed in MoS2 Film for Pt-scalable Catalyst
  • Frederick Osei-Tutu Agyapong-Fordjour, Seok Joon Yun, Hyung-Jin Kim, Wooseon Choi, Soo Ho Choi, Laud Anim Adofo, Stephen Boandoh, Yong In Kim, Soo Min Kim, Young-Min Kim, Young Hee Lee, Young-Kyu Han, and Ki Kang Kim. arXiv:2010.10908 2020
  • This work demonstrate the basal plane activation of 2D MoS2 via substituted V atoms as VSn unit in 2H-MoS2 lattice. The VSn units acts as acive sites and also charge transfer pathways for efficient hydrogen evolution.
  • Device application
  • Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics
  • Ki Kang Kim, Hyun Seok Lee, and Young Hee Lee. Chem. Soc. Rev. 47, 6342-6369 2018
  • This work reviews the recent progress of the large-area synthesis of hBN and other related vdW heterostructures via CVD, and artificial construction of vdW heterostructures and 2D vdW electronics based on hBN, in terms of charge fluctuations, passivation, gate dielectrics, tunneling, Coulombic interactions, and contact resistantces. The challenges and future perspectives for practical applications…
150.Quantum tunneling high-speed nano-excitonic modulator
Author
Hyeongwoo Lee, Sujeong Kim, Seonhye Eom, Gangseon Ji, Soo Ho Choi, Huitae Joo, Jinhyuk Bae, Ki Kang Kim, Vasily Kravtsov, Hyeong-Ryeol Park & Kyoung-Duck Park*
Journal
Nature Communications
Volume(Issue)
15,8725
Publication Date
09 October 2024
Project Number
2022R1A2C2091475
High-speed electrical control of nano-optoelectronic properties in two-dimensional semiconductors is a building block for the development of excitonic devices, allowing the seamless integration of nano-electronics and -photonics. Here, we demonstrate a high-speed electrical modulation of nanoscale exciton behaviors in a MoS2 monolayer at room temperature through a quantum tunneling nanoplasmonic cavity. Electrical control of tunneling electrons between Au tip and MoS2 monolayer facilitates the dynamic switching of neutral exciton- and trion-dominant states at the nanoscale. Through tip-induced spectroscopic analysis, we locally characterize the modified recombination dynamics, resulting in a significant change in the photoluminescence quantum yield. Furthermore, by obtaining a time-resolved second-order correlation function, we demonstrate that this electrically-driven nanoscale exciton-trion interconversion achieves a modulation frequency of up to 8 MHz. Our approach provides a versatile platform for dynamically manipulating nano-optoelectronic properties in the form of transformable excitonic quasiparticles, including valley polarization, recombination, and transport dynamics.